

1. Use three different ways to divide each **rectangle** into halves. For each rectangle, colour $\frac{1}{2}$ red and $\frac{1}{2}$ blue.

2. Divide each figure into halves. For each figure, colour $\frac{1}{2}$ red and $\frac{1}{2}$ blue. NOTE: Begin at a **vertex** to divide the figures.

3. Divide each figure into thirds. For each figure, colour $\frac{1}{3}$ red, $\frac{1}{3}$ blue, and $\frac{1}{3}$ green. NOTE: Use the centre points to help you.

4. Divide each figure into quarters. For each figure, colour $\frac{1}{4}$ red, $\frac{1}{4}$ blue, $\frac{1}{4}$ green, and $\frac{1}{4}$ yellow.

- 1. Colour $\frac{1}{2}$ of the **hexagon** red. Colour $\frac{1}{3}$ of the hexagon blue. Colour $\frac{1}{6}$ of the hexagon green.
- 2. Circle the letter of the sentence that is true.
 - a. The red part is largest.
 - b. The blue part is largest.
 - c. The green part is largest.
- 3. Use the hexagon to answer the questions.
 - a. What figure names $\frac{1}{6}$ of the hexagon? _____
 - b. What figure names $\frac{1}{3}$ of the hexagon? _____
 - c. How many sixths are in the blue third of the hexagon? _____ One third is the same as how many sixths? _____
 - d. How many sixths are in the whole hexagon? _____
 - e. How many thirds are in the whole hexagon? _____
 - f. How many halves are in the whole hexagon? _____
 - g. How many sixths are in the red half of the hexagon? _____ One half is the same as how many sixths? _____
 - h. Which is larger, a half or a sixth of the hexagon? _____
 - i. Which is larger, a sixth or a third of the hexagon? _____
 - j. Which is larger, a third or a half of the hexagon? _____

- 1. Divide hexagon B into 2 equal parts. Divide hexagon C into 3 equal parts. Divide hexagon D into 6 equal parts.
- a. How many parts are in hexagon *B*? _____
 Each part is one half of the hexagon. Write one half as a **common fraction**. _____
 - b. How many parts are in hexagon C? _____
 Each part is one third of the hexagon. Write one third as a common fraction. _____
 - c. How many parts are in hexagon *D*? _____ Each part is one sixth of the hexagon. Write one sixth as a common fraction. _____
- 3. a. Which is greater, $\frac{1}{3}$ or $\frac{1}{6}$?
 - b. Which is greater, $\frac{1}{6}$ or $\frac{1}{2}$?
 - c. Which is greater, $\frac{1}{2}$ or $\frac{1}{3}$?
- 4. a. How many halves are in hexagon *B*? _____
 - b. How many thirds are in hexagon *C*? _____
 - c. How many sixths are in hexagon *D*? _____

- 5. Divide hexagon B into 2 equal parts. Divide hexagon C into 3 equal parts. Divide hexagon *D* into 6 equal parts.
- 6. a. Which is larger, hexagon *B* or hexagon *C*?
 - b. Which is larger, hexagon *B* or hexagon *A*? _____
 - c. Which is larger, hexagon *C* or hexagon *D*?
- 7. a. How many sixths fit into one half of hexagon *B*? _____
 - b. How many sixths fit into two halves of hexagon *B*? _____
 - c. How many sixths fit into two thirds of hexagon *C*? _____
 - d. How many sixths fit into three thirds of hexagon *C*?
 - e. How many sixths fit into the whole hexagon *A*? _____
 - f. How many thirds fit into the whole hexagon *A*? _____
 - g. How many halves fit into the whole hexagon A? _____
 - h. How many thirds fit into the two halves of hexagon *B*? _____
 - How many sixths fit into the two halves of hexagon *B*? i.
 - i. One half is the same as how many sixths? _____

Use the pattern blocks to make the trades in problems 8 and 9. NOTE: The green triangles are sixths, the blue **rhombuses** are thirds, and the red **trapezoids** are halves.

- 8. a. How many sixths do you need to trade for one third? _____
 - b. $\frac{1}{3}$ equals how many sixths? _____
 - c. $\frac{1}{3} = \frac{1}{6}$ These are equivalent fractions.
- 9. a. How many sixths do you need to trade for $\frac{1}{2}$?

 - b. $\frac{1}{2}$ equals how many sixths? _____ c. $\frac{1}{2} = \frac{\Box}{6}$ _____ These are equivalent fractions.