TABLE OF CONTENTS

Expressions and equations

Lesson 1	Exponents	. 4		
Lesson 2	Square roots	14		
Lesson 3	Solve two-step equations	24		
Lesson 4	Two-step equations with rational numbers	34		
Lesson 5	Linear and nonlinear equations	44		
Lesson 6	Gradient	54		
Lesson 7	Graph linear equations	64		
Lesson 8	Solve sets of simultaneous equations graphically	74		
Lesson 9	Solve sets of simultaneous equations algebraically	84		
Plane geometry				
Lesson 10	Special pairs of angles	94		
Lesson 11	Angle sums	104		
Lesson 12	Triangle similarity	114		
Linear measurement and area				
Lesson 13	Pythagorean theorem	124		
Lesson 14	Distance formula	134		
Statistics	N.C.			
Lesson 15	Mean, median, range	144		
Graphs				
Lesson 16	Scatter plots	154		

Lesson 1 EXPONENTS PART **ONE**: Learn about expressions with exponents

Connect

The rules for working with exponents can help you simplify expressions with exponents:

- Add the exponents when multiplying powers with the same base. $a^3 \times a^3 = a^6$
- Subtract the exponents when dividing powers with the same base. $\frac{a^3}{a^2} = a^1$
- *Multiply* exponents when a power is *raised* to an exponent. $(a^2)^3 = a^6$

What is any number divided by itself? Use the subtraction rule to find $\frac{a^2}{a^2}$. Then use the result to make a general statement about n^0 for any number *n*.

.et's Talk

Think It Through	
Fill in the blanks as you solve the problem.	
Fill in the blanks as you solve the problem. Simplify each expression. $b^2 \times b^5$ $\frac{c^5}{c^2}$ (d ²) ⁵ The expression $b^2 \times b^5$ shows two powers with the base. What should you do with the exponents? Add the exponents. $2 + \$ Solution: $b^2 \times b^5 = \ The expression \frac{c^5}{c^2} shows two powers with the base. What should you do with the exponents? Subtract the exponents. 5 - \$	You can work with the expanded form of an expression containing exponents to check your answer. $\frac{c^5}{c^2} = \frac{\mathscr{L} \times \mathscr{L} \times c \times c \times c \times c}{\mathscr{L} \times \mathscr{L} \times c}$ $= c^3$
an What should you do with the exponents? Multiply the exponents. $2 \times ___ = _\$ Solution: $(d^2)^5 = _\$ Now, use what you know to solve this problem.	
1. Simplify $\frac{m^2 \times m^6}{m^4}$. Show your work.	

$$\frac{m^2 \times m^6}{m^4} = ----$$

PART TWO: Learn more about expressions with exponents

How can you factorise expressions with exponents?

Explore	You can use the Distributive Property and the rules for exponents to work with expressions with exponents. The Distributive Property deals with expressions involving multiplication and addition or subtraction. The area of this rectangle is $n^2 + 5n$. What expression represents the length of the rectangle?
Think	The area of a rectangle is equal to the length times the width. Think: <u>length</u> × width = <u>area</u> <u>length</u> × $n = \underline{n^2 + 5n}$
Connect	When each term of an expression has a common factor , you can use the Distributive Property to factorise the expression. The terms of the expression on the right are n^2 and $5n$. Factorise each term. Use the rules for exponents for n^2 : $n^2 = n^{1+1} = n^1 \times n^1$ Use the Distributive Property to factorise the common factor, n . So, $A = n(n + 5)$, and also $A = \text{length} \times \text{width}$. If the width of the rectangle is n , then the length must be $(n + 5)$.

Let's Talk

How can you use the rules for exponents and the Distributive Property to **expand** $x(x^2 + x + 1)$?

 $2b(b^2 + 4) =$ _____

PART THREE: Choose the right answer

Solve the problem. Then read why each answer choice is correct or not correct.

Solve	Which expression is equivalent to $a^2 \times a^4 \times a^2$ (a) a^6 (b) a^7 (c) a^8 (d) a^9
	Check whether you chose the correct answer.
Check	$a = a^{1}, \text{ so } a^{2} \times a^{4} \times a = a^{2} \times a^{4} \times a^{1}.$ Each of the powers has the same base. To multiply powers with the same base, add the exponents. $a^{2} \times a^{4} \times a^{1} = a^{2+4+1} = a^{7}$ 2 + 4 + 1 = 7 So, the correct answer is (B). Why are the other answer choices not correct?

	The exponent of the last factor, <i>a</i> , was neglected. Because $a = a^1$, the exponents are 2, 4 and 1.
© a ⁸	The exponents should be added, not multiplied.
D a ⁹	The first and second exponents were multiplied and then the third exponent was added. All three exponents should be added.

Solve each problem. Use the hints to avoid mistakes.

- If a variable has no written exponent, its exponent is 1. For example, a = a¹.
- To *multiply* powers with the same base, *add* exponents; do not multiply exponents.
- To *divide* powers with the same base, *subtract* exponents; do not divide exponents.
- **3.** Which is a common factor of all three terms in the expression below?

$$4b^3 + 2b^2 + 6b^4$$

- (A) b^3
- B b⁴
- © 2*b*²
- D 2b³
- 4. Which operation should you perform on the exponents to simplify the expression?

 - A addition
 - B division
 - © multiplication
 - D subtraction

5. A rectangle has an area of $m^3 + 2m^2$ and a width of m + 2.

$$A = m^3 + 2m^2 \qquad m + 2$$

What is the length of the rectangle?

- (A) m²
 (B) m³
- $(m^3 + 2m^2) (m + 2)$
- ($m^3 + 2m^2$) + (m + 2)
- **6.** Which shows a pair of expressions that are equivalent?
 - (p^2)³ and p^5
 - (B) $\frac{t^8}{t^4}$ and t^2
 - $\bigcirc q^4 + q^2$ and q^6
 - (D) $y^2 \times y^2 \times y$ and y^5

PART FOUR: Write the best answer

Study the model. It is a good example of a written answer.

CA12636 • 9781760010300 • © 2013 Hawker Brownlow Education

Your Turn Solve the problem. Use what you learned from the model.

7.	A rectangular playing field has an area of $2z^3 + 6z^2$. The width of the field is $z + 3$	Did	you
	What is the length of the field?		show each step?
	Show each step. Then explain how you found the solution.		answer the question asked?
			give important details?
			use maths words?
	Brownlow	3	
	Solution:		
-	Explanation:		
-	\bigcirc		

PART FIVE: Prepare for a test

- add exponents to multiply powers with the same base.
- subtract exponents to divide powers with the same base.
- multiply exponents to raise a power to an exponent.
- use the Distributive Property to factorise or expand an expression.

Solve each problem.

8. Which of the following expressions is equivalent to the expression below?

$$x(x^2 + 4)$$

- (A) $x^2 + 4x$
- (B) $x^3 + 4x$
- $x^3 + 4$
- (b) $x^2 + x + 4$
- **9.** A prism has a volume of $b^3 + 2b^2 + b$ The height of the prism is *b*. What is the area of the base?
 - (A) $b^2 + 2b + 1$
 - (B) $b^2 + 2b + b$
 - $\bigcirc b^3 + 2b^2 + b$

(b)
$$b(b^2 + 2b + 1)$$

10. Which expression can be simplified by multiplying the exponents?

(a)
$$\frac{t^{6}}{t^{3}}$$

(b) $(c^{4})^{3}$
(c) $q^{2} \times q^{5}$
(c) $r^{3} + r^{5}$

11. Which expression has terms with a common factor of a^2 ?

(A)
$$2a + 2a^2$$

(B)
$$4a^3 + 5a$$

- \bigcirc 5*a*³ + 3*a*²
- (b) $6a^3 + 2a^2 + 3$

- **12.** A rectangle has length 5z and width $z^2 + 3z$. What is the area of the rectangle?
 - (A) $z^2 + 8z$
 - (B) $z^3 + 3z^2$
 - © $5z^3 + 3z$
 - (D) $5z^3 + 15z^2$

14. Look at the expression below.

$$\frac{n^{12}}{n^{3}}$$

What operation should you perform on the exponents to divide the powers?

Divide the powers.

- **13.** Which expression is equivalent to $y^8 \times y^4$?
 - (a) y^2 (c) y^{12}
 - B y⁴
 D y³²
- **15.** A rectangular prism has a volume of $3a^4 + a^2$. The area of the base of the prism is $3a^2 + 1$. What is the height of the prism?

Show each step. Then explain how you found the solution.

	N		
	Broi		
Solution:	KC)		
Explanation:			
G			